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Abstract—Item clustering is commonly used for 
dimensionality reduction, uncovering item similarities and 
connections, gaining insights of the market structure and 
recommendations. Hierarchical clustering methods produce a 
hierarchy structure along with the clusters that can be useful 
for managing item categories and sub-categories, dealing with 
indirect competition and new item categorization as well. 
Nevertheless, baseline hierarchical clustering algorithms have 
high computational cost and memory usage. In this paper we 
propose an innovative scalable hierarchical clustering 
framework, which overcomes these limitations. Our work 
consists of a binary tree construction algorithm that creates a 
hierarchy of the items using three metrics, a) Identity, b) 
Similarity and c) Entropy, as well as a branch breaking 
algorithm which composes the final clusters by applying 
thresholds to each branch of the tree. he proposed framework 
is evaluated on the popular MovieLens 20M dataset achieving 
significant reduction in both memory consumption and 
computational time over a baseline hierarchical clustering 
algorithm. 

Keywords— Hierarchical item clustering, topic modeling, 
sequence similarity, sequence identity 

I. INTRODUCTION 
Modern web applications require an interdisciplinary set 

of techniques for efficient and accurate filtering, as well as 
ranking and personalizing vast amounts of information in 
real-time fashion. Nowadays users browse billions of 
movies, songs, videos, social media entities and e-commerce 
products on a daily basis. In order to ensure timely and 
proper data processing that will enable real time operation of 
smart applications, a commonly applied technique is data 
reduction in the form of grouping similar items into clusters.  

Item clustering is frequently used in recommender 
systems that assist users discovering items of interest. The 
most popular approach used in the field of recommendation 
systems is collaborative filtering (CF) [1], a technique that 
looks for patterns in the overall user activity to produce 
recommendations. One of the main problems CF faces is 
sparsity, since the overall number of available items is 
usually enormous, but each user is interested in only a very 
small subset of them. In this case item and/or user clustering 
is implemented for reducing complexity, thus allowing real 

time predictions, and increasing their accuracy by excluding 
information not relevant to the question at hand.  

Another area of interest for item clustering is the process 
of decision making in business. Analysing inter-product 
similarities is crucial for understanding product-market 
structures and competitive market relationships [2]. 
Especially in marketing, item categorization and clustering 
has multifarious applications; developing new products, shelf 
placement optimization for retail products, product 
replacement in case of out of stocks, and relationship 
analysis among products are only a few examples [3]. 

Hierarchy is of paramount importance for a diverse 
number of item clustering applications. Hierarchy provides 
insights to retailers for efficiently managing categories and 
sub-categories. Moreover, for long term strategic decisions, 
management must take into account not only current and 
direct competition from similar entities (e.g. similar brands), 
but indirect competition as well. Indirect competition comes 
from entity variants (i.e. entities from different levels of the 
hierarchy) and may be more substantial threats in the future. 
In that case hierarchical clustering has been found to be of 
considerable help [2]. Additionally, the hierarchy extracted 
by these methods can be further considered as a decision tree 
that can assist in the classification of new items. However, 
hierarchical clustering methods require high computational 
power and memory usage as they are based on the 
formulation of high dimensional distance matrices, used for 
pairwise comparisons between all the available data points.  

Our research focuses on implementing a new scalable 
multi-metric algorithm for hierarchical item clustering. Our 
innovation lies in the fact that, instead of performing 
pairwise comparisons between all items of the dataset, we 
build a low dimensional frequency matrix for the root cluster 
which is split recursively as one goes down the hierarchy. 
Thus, our proposed framework requires both less 
computational power and memory. The input of our 
algorithm consists of items represented by a mixture of 
topics that derive from topic modeling item’s contextual 
information.   

The rest of the paper is organized as follows; Section II 
discusses related work, while the proposed integrated 
framework for item clustering is analysed in Section III. In 
Section IV our innovative hierarchical clustering algorithm is 
described, whereas Section V contains the experimental 
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results and the clustering evaluation. Finally, conclusions 
and future work are highlighted in Section VI. 

II. BACKGROUND AND RELATED WORK 
Recently, item clustering has attracted increased interest 

mainly due to the WWW explosion, as item clustering is a 
core technology for recommendation and prediction engines 
used in online recommender systems. Fremal et al. [4], in an 
attempt to improve rating prediction results of a CF based 
recommender system, proposed a clustering approach that 
used weighting strategies on the items’ genres. On the other 
hand, Das et al. [5] introduced a clustering based 
recommender system, where voting systems combined 
opinions of different users for improving recommendations 
to new users. Furthermore, Wang et al. [6] adopt item 
clustering for obtaining latent factors in order to apply matrix 
factorization as a next step.  

Business analytics is another common field of application 
for item clustering methods. Srivastave et al. [2] proposed an 
iterative hierarchical clustering procedure that is suitable for 
numerous marketing applications. In the work of Yang et al. 
[7] item clustering was employed for industry categorization, 
where Doc2vec was employed for document embedding and 
Ward’s hierarchical clustering algorithm was applied to 
group similar firms together. Finally, in the work of Hol et 
al. [3] a genetic algorithm for basket data analysis and item 
clustering was proposed.  

Hierarchical clustering algorithms [8] compose a tree of 
clusters that comprises a richer data structure than flat 
algorithms’ output. In addition, they do not require users to 
define the number of clusters. Hierarchical clustering 
algorithms are categorized in two major categories: a) 
agglomerative (or top-down) algorithms and b) divisive (or 
bottom-up) algorithms. Agglomerative algorithms can be 
further categorized according to the similarity measures they 
employ into single-link, complete link, group-average, and 
centroid similarity. Top-down algorithms typically are more 
complex, as they hold information about the global 
distribution of the dataset, in contrast with bottom-up 
methods that make clustering decisions based on local 
patterns. 

Nevertheless, the complexity of the naïve hierarchical 
clustering algorithm is O(N3) as for every decision needs to 
be taken, an exhaustive scan of the NxN similarity matrix is 

necessary. Other more efficient algorithms can reduce the 
complexity to O(N2logN) or even O(N2) but the creation of 
the NxN similarity matrix is necessary, hence memory 
requirement demands become extremely high.  

Thereupon, although there is a wide range of hierarchical 
item clustering algorithms, they have substantial 
computational and memory requirements. In this paper we 
introduce an innovative top-down hierarchical clustering 
algorithm which instead of computing pairwise comparisons 
between data points, it is based on the construction of low 
dimensional frequency matrices, thus is scalable and has low 
memory and computational requirements. 

III. A NEW ITEM CLUSTERING FRAMEWORK 
In this section we propose an efficient framework (Fig. 1) 

for hierarchical item clustering based on item topics 
modeling. The proposed framework is composed of 1) the 
data preprocessing module, which performs topic modeling 
using item’s contextual data, 2) the data discretization 
module, 3) the hierarchical clustering algorithm, and 4) the 
clustering evaluation module that is based on semantic 
similarity between the major topics of each cluster. 

A. Data Preprocessing Module 
The preprocessing module employs topic modelling by 

the use of Latent Dirichlet Allocation (LDA) for extracting 
semantic information [9], [10]. Topic modeling is based on 
the assumption that each document d is described as a 
random mixture of topics P( |d) and each topic  as a 
focused multinomial distribution over terms P(w| ). LDA 
builds a set of  thematic topics, each expressed with a set 
of NW terms, utilizing terms that tend to co-occur in a given 
set of documents. Parameters  and NW are user specified 
and can be used to adjust the degree of specialization of the 
latent topics.  

The topic-term distribution P( |d) and the document-
term distribution P(w| ) are estimated from an unlabeled 
corpus of documents D using Dirichlet priors. The Gibbs 
sampler [11] iterates multiple times over each term wi in 
document d and samples a new topic j, according to (1), until 
the LDA model parameters converge. In (1), (2), (3), CW  
maintains a count of all topic–term assignments, CD  counts 
the document-topic assignments, W is the set of all available 
terms, -i are all topic-term and document-topic assignments 
except the current assignment i for term wi, and  and  are 
the hyperparameters of the Dirichlet priors. The posterior 
probabilities of (1) are estimated using (2) and (3). 

 (1) 

(2) 

(3) 
Fig. 1. A framework for hierarchical item clustering.
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The most common way to evaluate a probabilistic model 
is to measure the log-likelihood of a held-out test set, thus we 
use perplexity (4) which is utilized by convention in 
language modeling [9]. A lower perplexity score indicates 
better generalization performance. 

(4)                                                                                                                           

B. Data Discretization Module 
The input vectors of the clustering algorithm, in our case 

the mixture of topics P( |d), calculated by the topic 
modeling process are discretized into partitions of B lengths 
by assigning each value into a bin based on the interval 
where it belongs to. B is selected based on the amount of 
information we want to be considered by the model.  

C. Theoretical basis for the clustering algorithm 
1) Frequency Matrix 
The hierarchical clustering algorithm employs a 

frequency 2-dimensional matrix, where the number of rows 
equals to the number of bins (B) selected for the 
discretization of the topic mixture, and number of columns 
equals to the number of topics ( ) of the sequences 
provided as input. Each element (i,j) of the matrix 
corresponds to the number of times bin i is present in topic j 
for all sequences. The count matrix (CM) contains the 
absolute values, whereas the frequency matrix FM (FM = 
CM / ) contains the corresponding frequencies. In addition 
to FM, a frequency similarity matrix (FSM) is constructed 
using the same approach, but instead of the B bins, groups 
of similar bins are used under given schemes.  

2) Bin Similarity  
Bin similarity (8) is defined as the average column sum 

of the Bin Similarity Matrix (7), which is a weighted 
version of the FM. To compute column j of BSM, the non-
zero elements of FM are multiplied by a weight factor that 
derives from the similarity of the bins that participate in 
topic j. BSSM is a square matrix with order B, where each 
element (i,j) indicates how similar bins i, j are (5). 

     BSSMij  =                                               (5)  

mask

                  BSM  =                                                        (7) 

where  denotes matrix multiplication and  denotes 
element-wise multiplication. 

ΒS =                                             (8) 

3) Identity  
Identity is a similarity metric that is computed for each 

cluster based on the corresponding frequency matrix. This 

metric, indicates how compact the cluster is and it is 
expressed as the percentage of sequences contained in the 
cluster with an exact alignment. This means that the identity 
of column j ( ) of the FM is equal to 100% when all 
sequences belong to same bin of topic j. Otherwise, the 
identity of column j is equal to zero. The overall identity (9) 
of the cluster is the average value of the columns’ identity.   

Ι   

4) Entropy 
The entropy quantifies the expected value of the 

information contained in a vector. It is computed for each 
column of the frequency matrix and represents the diversity 
of the column. The Shannon entropy equation [12] provides 
a way to encode a string of symbols, based on the frequency 
of the symbols. It is depicted in (11) where pi is the 
probability of bin i showing up in the topic j. The entropy is 
ranging from 0 to Inf. A lower entropy value indicates a 
more homogeneous column. 

              Hj =                                                      (11) 

IV. A NEW ITEM CLUSTERING FRAMEWORK 
In this section we propose a novel clustering algorithm 

that consists of two phases: 1) the first phase includes the 
construction of a top down binary tree by consecutively 
dividing the frequency matrix into two sub-matrices until 
only unique item vectors remain at the leaf-level, and 2) the 
second phase is a branch breaking algorithm, where each 
branch of the tree is cut at an appropriate level using 
thresholds for the metrics. 

A. Binary Tree Construction  
The first phase consists of a top down hierarchical 

clustering method (Algorithm 1). At the beginning of the 
process, it is assumed that all  items belong to a single 
cluster (C0), which is consequently split recursively while 
moving along the different levels of the tree. Ultimately, the 
constructed output of the clustering process is presented as a 
binary tree. The process applied to each cluster (Ci) while 
constructing the tree can be formally described in the 
following steps: 

Step 1: Create frequency and frequency-similarity based 
matrices (FMi, FSMi).  

Step 2: Compute Identity, Entropy and Bin Similarity of 
the matrices (Ii, ISi, Hi, HSi, BSi) applying (9), (11), (8) on the 
FMi and the FSMi respectively. The identity metric 
computed on the FSM is named as Similarity (IS). 

Step 3: Split the frequency matrix into two sub matrices 
according to the following criteria:  

Criterion 1: Select the element of the FMi with the 
highest percentage.  
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Criterion 2: If the highest percentage value exists in more 
than one elements of FMi, the column with the lowest 
entropy value is selected.  

Criterion 3: In the case where more than one columns 
exhibit the exact same entropy value, criterion 1 is applied to 
the FSMi. 

Criterion 4: In the case of non-unique columns, criterion 
2 is applied to the FSMi. 

Criterion 5: If the number of columns is still more than 
one, one column from the above sub group of columns is 
randomly selected. 

Step 4: Update the Level matrix (Y) and the Metric 
matrix (M) that contains the metrics for each cluster (I, IS, H, 
HS, BS). 

Step 5: Check for leaf-cluster. 
At the beginning of the process the user can select the 

type of the algorithm i.e. if the split of the matrices wants to 
be performed on the FM (option identity_algo), or on the 
FSM (option similarity_algo). In the case that 
similarity_algo is selected, the split at step 3 is performed 
using only criteria 3 and 4.  

B. Branch Breaking 
The second phase consists of the branch breaking process 

(Algorithm 2). For each branch of the constructed binary 
tree, the appropriate level to be cut is examined. Since the 
tree is asymmetric and the number of items that each cluster 
consists of varies, the tree is not cut by selecting a unique 
level for the overall tree, but branch-specific thresholds are 
used instead. For each branch, the parent cluster is compared 
to its two children clusters recursively as one goes down 
through the path of the tree branch. The comparison is 
applied using the metrics that have been computed for each 
cluster Ci (Ii, ISi, Hi, HSi, BSi) and user selected thresholds 
for each metric (thrI, thrH, thrBS). An additional limitation 
that is set for the identity metric is that the leaf clusters must 
have an Identity value higher than 20%. This is set to avoid 
pruning at a very high level of the tree in the case that 
Identity is too small and the improvement in the metrics is 
not big enough. 

V.  EXPERIMENTAL RESULTS 

A. Experimental setup 
Next, we evaluate the proposed hierarchical clustering 

framework. Analysis and evaluation are performed with 
benchmark data provided by the popular MovieLens 20M 
dataset [13], that consists of 465,000 tag applications applied 
to 27,000 movies by 138,000 users. We formed documents 
used as input to the preprocessing module using only user 
tags (after removing stop-words, special characters and 
acronyms) and not the movie titles, while the latter was 
found to be misleading in terms of semantically defining a 

Algorithm 2: Branch Breaking 

Y: Level-Cluster matrix (Nx L) 
M: Metric Matrix (NCx5) with the Identity values (I, IS), the Entropy values (H, 
HS), and the Bin Similarity (BS) of all clusters computed on FM and FSM  
thrA: the threshold set for metric A 
type: [identity_algo, similarity_algo]  
Input:    Y, M, thrI, thrH, thrBS, algo 
Output: Y, M  
1.            Initialization: 
               Find all unique paths of tree from the root till the leaves 
2.            Iteration: 
               Repeat for each path-i  
    PNi <- the cluster ids that constitute the path 
    Compare each cluster of the path with its child using the metrics 
    Repeat for each cluster-j of PNi 
         if (type = identity_algo)  
              condI  ((Ij-Ij+1)*0.5 + (ISj-ISj+1)*0.5) < thrI 
              condH  (abs(Hj-Hj+1)*50 + abs(HSj-HSj+1)*50) < thrH  
              condBS  abs(BSj-BSj+1) < thrBS  
              cut_condition  Ij>20 & (condI || condH || condBS) 
         else 
              condI  (ISj-ISj+1) < thrI 
              condH  abs(HSj-HSj+1)*100 < thrH  
              condBS  abs(BSj-BSj+1) < thrBS  
              cut_condition  ISj>20 & (condI || condH || condBS) 
                          end if 
         if (cut_condition) then   
              Convert Cj to leaf 
              Update Y, M matrices  
              break 
         end if 
                     End  
               End 
3.   return Y, M  

Algorithm 1: Binary Tree Construction 

N: Number of sequences, L: Number of tree levels, NC: Number of clusters 
X: Input matrix (Nx2) with the sequence id and the N -length sequences 
Y: Level-Cluster matrix (Nx L) 
M: Metric Matrix (NCx6) with the identity values (I, IS), the entropy values 
(H, HS) and the bin similarity (BS) of all clusters computed on FM and FMS  
type: The algorithm type (identity_algo or similarity_algo) 
Input: X, type 
Output:    Y, M  
1.  Initialization: 
 Create a root node (cluster C0) for the tree 
2.  Iteration: 

Repeat for every new cluster-i  
      Compute the level that Ci belongs to 
      Compute FMi and FSMi matrices  
      Compute metrics (Ii, ISi, Hi, HS, BS) and update M matrix  
      Criteria for Division  
      Select celli of FMi or FSMi according to the criteria: 
      If (type = similarity_algo) then   
           Go to step *.4.11 
      Elm  the elements of FMi with the maximum value  

      if Elm.length < 2 then  
            celli  Elm  
            Go to step *.5 
      end if 
      Elm  the elements of Elm with the minimum value of Ei 

      if Elm.length < 2 then 
                               celli  Elm 
            Go to step *.5 
      end if 
      Elm  the elements of Elm with the maximum value of FSMi 

      if Elm.length < 2 then 
            celli  Elm 
            Go to step *.5 
      end if  
      Elm  the elements of Elm with the minimum value of ESi  

      if Elm.length < 2 then  
            celli  random element of Elm 
      end if  
      Division  
      j  index of the left child of node-i (Ci)  
     Add the sequences that belong to celli to cluster Cj  
     Add all the other sequences to cluster Cj+1 

     Fill in column Y[ ,level+1] with Cj or Cj+1 accordingly   
     Check if Cj or Cj+1 is leaf  
 End 
3. return Y, M 
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movie. Since the dataset also contains some movies without 
any user tags, we ended up with 19,370 items. Afterwards, 
we created 20-length item vectors after applying LDA on the 
aforementioned documents, experimenting on the number of 
topics  from 5 to 500 and evaluating the results using the 
perplexity metric.   

The item vectors were then discretized in 10 bins 
represented by alphabetic letters from A to J. The bin with 
the highest percentage is represented by A, whereas the one 
with the lowest percentage is described with J. In order to 
create the FSM, the groups of similar bins that were used are 
non-overlapping and are given by pairing bins in descending 
order i.e. <A,B>, <C,D>, <E,F>, <G,H>.  

B. Results and discussion  
Through the application of the binary tree construction 

algorithm of type similarity_algo, a binary tree with 22 
levels and 739 leaf clusters was constructed. The Identity 
and Similarity metrics began with 0 values at the root of the 
tree, whereas the Entropy metric began with 0.266. These 
values were improved as moving down the different levels 
of the tree and at the leaf level the Similarity value was 
close to 100 and the Entropy was close to 0.  

TABLE I.  AVERAGE VALUES OF THE EVALUATION METRICS OF THE 
CLUSTERS PER TREE LEVEL AFTER BRANCH BREAKING 

L #C I IS H BS TS 
0 1 0.000 0.000 0.266 59.967  NaN 
1 2 0.000 2.500 0.202 70.165  NaN 
2 4 21.250 27.500 0.154 80.505  NaN 
3 8 46.875 55.000 0.103 88.143  NaN 
4 13 56.538 66.538 0.084 91.148  NaN 
5 19 61.579 73.421 0.067 92.874  NaN 
6 25 60.800 76.000 0.068 93.581  NaN 
7 33 62.576 79.697 0.062 94.437 39.400 
8 40 66.750 82.625 0.053 95.070 39.400 
9 43 66.977 82.791 0.052 95.124 50.300 

10 44 65.455 82.045 0.054 94.907 50.300 
11 45 64.000 81.444 0.057 94.709 50.300 
12 46 62.609 80.978 0.059 94.595 49.600 
13 47 61.277 80.638 0.061 94.457 49.600 
14 48 60.000 80.417 0.063 94.356 49.600 
15 49 58.776 80.306 0.064 94.306 49.600 
16 50 57.600 80.300 0.065 94.251 49.600 
17 51 56.471 80.392 0.066 94.221 49.600 
18 52 55.385 80.577 0.066 94.218 46.300 
19 53 54.340 80.849 0.066 94.237 57.000 

 

At the second phase, the tree was cut by applying the 
branch break algorithm using the percentage of 0.5% as 
threshold for all the comparisons of the metrics. The final 
tree consists of 19 levels and 53 leaf clusters. The average 
values of each level’s metrics using the FM and the FSM 
matrices are summarized in Table I. The table shows that 
the identity value increased towards the leaves of the tree. 
Notably, when groups of similar bins are used instead of the 
bins it selves, the similarity value (IS) was a little higher as 
expected. The values of the Topic Similarity (TS) metric, 

which is discussed in the following sub-section, are also 
included in the table. 

Fig. 2 shows the bar plots for each one of the leaf clusters 
after the application of the branch breaking algorithm. Bins 
with high percentage at a specific topic are visualized with 
blue colors, whereas bins with low percentage are presented 
with yellow colors. Due to the nature of the data, each cluster 
has a very low percentage at the majority of the topics and a 
middle or a high percentage at only a few topics. So, each 
cluster can be characterized by its major topics. For example, 
cluster 1, which is represented by the pattern 
JJJHJJHJJJJJHJJJJJIJ, is characterized by the topics 
4, 7 and 13, whereas the last cluster is characterized by topic 
1. 

 
Fig. 2. Bar plots of the 53 clusters created after the branch breaking 

algorithm. 
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C. Clustering evaluation  
1) Semantic similarity for cluster evaluation  
Due to the sparsity of the frequency matrix of each 

cluster and the fact that each cluster is characterized by only 
a few topics, we evaluated the clustering results by 
calculating the semantic similarity between major topics of 
each cluster. The topic similarity is extracted using semantic 
analysis of the topics that were derived from topic modeling. 

Semantic similarity, in contrast to string-based matching 
can identify semantically relevant concepts that consist of 
different strings. A widely used metric for calculating 
semantic similarity is the Normalized Google Distance 
(NGD) [14], which is derived from the number of hits 
returned by the Google search engine for a given set of 
keywords. Keywords with similar meanings tend to be close 
in “units” of Google distance, while words with dissimilar 
meanings tend to be farther apart. The NGD between two 
search terms i and j is presented in (12), where WP is the 
total number of web pages searched by Google, f( i) and f( j) 
are the number of hits for terms i and j respectively, and 
f( i, j) is the number of web pages that contain both i and j. 
In practice, NGD values belong to the range [0,1], with 1 
referring to complete semantic match. 

(12) 
 

Although NGD is a reliable semantic metric, calculating 
the similarity of thousands of terms may turn out to be a time 
consuming process. As web search engines have limited 
throughput for computer generated queries, calculating the 
NGD value for a large number of documents within an 
acceptable time period is not feasible. Thus, in this work we 
use Wikipedia documents to employ an alternate of the 
NGD, the Wikipedia-based Semantic Similarity Metric.  

To calculate the Wikipedia-based semantic similarity, we 
followed the approach proposed by Kolb [15]. First, we used 
a simple context window of three words for counting co-
occurrences. By moving the window over a Wikipedia 
corpus consisting of 420,184 words (resulting into 1.9 billion 
tokens1), we generated a co-occurrence matrix. In order to 
find a word's distributionally similar words, one should 
compare every word vector with all other word vectors. For 
vector comparison, Lin's information theoretic measure [16] 
was employed. To compute the overall matching score 
between two topics, i.e. the pairwise Topic Similarity (TS) 
we used the matching average method (13), which calculates 
the similarity between two topics i and j by dividing the 
sum of similarity values of all match candidates of both sets 
by the total number of set tokens.  

TSij   =                                                       (13) 

By employing (13), a N ×N  similarity matrix with the 
pairwise TS between all the N  topics was created. Its main 
diagonal entries were equal to 100%, whereas the rest of the 
entries were taking values between the interval [3, 63]%. 

2) Comparison with a baseline hierarchical algorithm 
In this section we present the experimental results on the 

MovieLens 20M dataset using the Frequency Based 
Hierarchical Clustering (FB HC) algorithm and a Baseline 
Divisive Hierarchical2 (BHC) algorithm with four different 
evaluation metrics: I, IS, H, BS, TS. Although it is common 
for internal clustering evaluation to use the Silhouette 
coefficient, this metric measures how close each point in one 
cluster is to points in the neighboring clusters and is 
computed by making pairwise comparisons between the 
elements of the dataset. Computing pairwise distances is 
counter to the main point of our algorithm due to the high 
complexity it introduces as well as the exponential growth 
with respect to the size of the data. The pairwise 
comparisons are replaced by the usage of the frequency 
matrix in our case, so the Silhouette coefficient and other 
relevant metrics for cluster validation do not satisfy our 
algorithm’s needs. 

TABLE II.  AVERAGE VALUES OF THE EVALUATION METRICS OF  THE 
CLUSTERS CREATED USING THE FB AND BASELINE HC ALGORITHMS   

#C Algorithm I IS H BS TS 

23 
BHC 0.652 13.696 0.167 85.769 56.400 

FB HC 54.565 74.783 0.081 93.264 NaN 

33 
BHC 4.697 24.091 0.153 87.837 49.600 

FB HC 68.939 83.939 0.050 95.439  NaN 

53 
BHC 11.415 35.189 0.139 89.847 44.400 

FB HC 54.340 80.849 0.066 94.237 57.000 

125
BHC 24.800 53.080 0.120 92.886 42.300 

FB HC 69.120 90.600 0.038 96.981 40.300 

Table II depicts the comparison between the average 
values of the evaluation metrics that have been computed for 
each cluster, using four different number of clusters: 23, 33, 
53, 125. For the FB HC algorithm these clusters were created 
by applying the branch break algorithm using as threshold 
for all the metrics the values: 5, 1, 0.5, 0.25, accordingly, 
whereas for the BHC algorithm the desired number of 
clusters is an input parameter. Topic similarity is computed 
only for those clusters that have more than one major topics 
and contain more than 10 elements. High values of Identity, 
Bin Similarity and Topic Similarity, and low values for 
Entropy indicate high quality clustering results, so this table 
makes clear that FB HC algorithm outperforms the baseline 
algorithm.  

Fig. 3 shows the distribution of the metric values that 
correspond to each cluster that has been created using the 
two algorithms for number of clusters equal to 53. The box 
plots and the single points that correspond to each cluster’s 
metrics are presented. The lines extending vertically from 
the boxes indicate the variability outside the upper or the 
lower quartiles, whereas the horizontal lines indicate the 
median values of the data points. We observe that the 
distributions of the FB HC algorithm for all IS, H and BS 
metrics are much better than those created by the BHC 
algorithm. TS metric is also better for our method but the 
difference here is not so high. More specifically, in the FB 
HC algorithm, metric IS is 45.6% higher, H is 52.5% lower 
and TS is 4.4% higher than the corresponding values that the 
BHC algorithm achieved.    1 http://www.linguatools.de/disco/disco-download_en.html. 

  2 https://www.rdocumentation.org/packages/cluster/versions/2.0.7-1/topics/diana. 
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Fig. 3. Comparison between BHC and FB HC algorithms for 53 clusters. 

Regarding the memory demands, the average amount of 
memory that was used during the application of the FB HC 
algorithm is only 63.64MB, whereas the corresponding 
value for the BHC algorithm equals to 3063.81MB. As for 
the computational time, the FB HC took 6.7min to run, 
whereas the BHC took 1260min. This means that our 
method achieved a 98% reduction in memory usage and a 
99.4% reduction in computational time.    

VI. CONCLUSION AND FUTURE WORK 
In this work we proposed a novel hierarchical clustering 

framework for clustering items that derive from topic 
modeling. Our framework consists of two main phases: 1) 
the application of a binary tree construction algorithm, 
which constructs a hierarchy of items using Identity, 
Similarity and Entropy measures to form the clusters, and 2) 
a branch breaking algorithm, which prunes each branch of 
the tree at an appropriate level using thresholds for the 
evaluation metrics. Our approach overcomes limitations 
regarding the number of items that can be handled by a 
hierarchical clustering algorithm due to memory limitations. 
Moreover, our algorithm has increased scalability compared 
to a baseline hierarchical clustering algorithm, as instead of 
making pairwise comparisons between all the elements of 
the dataset to form the clusters, frequency tables are used. 

The clustering method was applied to the MovieLens 
20M dataset and results of this analysis showed that the 
Identity and Similarity values increase as one transitions 
from the root towards the leaves of the tree. The final 
number of clusters can be selected by setting appropriate 
thresholds as input to the branch breaking algorithm.  

Future work involves the application of graph theory in 
order to uncover connections between the clusters and 
obtain an insight of how similar the leaf clusters are. This 
information can be used to merge similar clusters together 
as a next step. Moreover, a valuable extension of this work 
for real time applications would be the implementation of a 
decision-making algorithm that exploits the hierarchy of the 
clusters to perform new item categorization into the existing 
clusters. Finally, additional testing and optimization for 

performance is needed, focusing on much bigger datasets, as 
well as a robust statistical evaluation of the evident 
improvement in memory usage and computational time. 
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