

A hierarchical multi-metric framework for item clustering

Maria Th. Kotouza
Electrical and Computer

Engineering
Aristotle University of

Thessaloniki
Thessaloniki 54124, Greece

maria.kotouza@issel.ee.auth.gr

Konstantinos N. Vavliakis
Electrical and Computer

Engineering
Aristotle University of

Thessaloniki
Thessaloniki 54124, Greece

kvavliak@issel.ee.auth.gr

Fotis E. Psomopoulos
Institute of Applied

Biosciences,
Centre for Research and

Technology Hellas,
Thessaloniki, 57001, Greece

fpsom@certh.gr

Pericles A. Mitkas
Electrical and Computer

Engineering
Aristotle University of

Thessaloniki
Thessaloniki 54124, Greece

mitkas@auth.gr

Abstract—Item clustering is commonly used for
dimensionality reduction, uncovering item similarities and
connections, gaining insights of the market structure and
recommendations. Hierarchical clustering methods produce a
hierarchy structure along with the clusters that can be useful
for managing item categories and sub-categories, dealing with
indirect competition and new item categorization as well.
Nevertheless, baseline hierarchical clustering algorithms have
high computational cost and memory usage. In this paper we
propose an innovative scalable hierarchical clustering
framework, which overcomes these limitations. Our work
consists of a binary tree construction algorithm that creates a
hierarchy of the items using three metrics, a) Identity, b)
Similarity and c) Entropy, as well as a branch breaking
algorithm which composes the final clusters by applying
thresholds to each branch of the tree. he proposed framework
is evaluated on the popular MovieLens 20M dataset achieving
significant reduction in both memory consumption and
computational time over a baseline hierarchical clustering
algorithm.

Keywords— Hierarchical item clustering, topic modeling,
sequence similarity, sequence identity

I. INTRODUCTION
Modern web applications require an interdisciplinary set

of techniques for efficient and accurate filtering, as well as
ranking and personalizing vast amounts of information in
real-time fashion. Nowadays users browse billions of
movies, songs, videos, social media entities and e-commerce
products on a daily basis. In order to ensure timely and
proper data processing that will enable real time operation of
smart applications, a commonly applied technique is data
reduction in the form of grouping similar items into clusters.

Item clustering is frequently used in recommender
systems that assist users discovering items of interest. The
most popular approach used in the field of recommendation
systems is collaborative filtering (CF) [1], a technique that
looks for patterns in the overall user activity to produce
recommendations. One of the main problems CF faces is
sparsity, since the overall number of available items is
usually enormous, but each user is interested in only a very
small subset of them. In this case item and/or user clustering
is implemented for reducing complexity, thus allowing real

time predictions, and increasing their accuracy by excluding
information not relevant to the question at hand.

Another area of interest for item clustering is the process
of decision making in business. Analysing inter-product
similarities is crucial for understanding product-market
structures and competitive market relationships [2].
Especially in marketing, item categorization and clustering
has multifarious applications; developing new products, shelf
placement optimization for retail products, product
replacement in case of out of stocks, and relationship
analysis among products are only a few examples [3].

Hierarchy is of paramount importance for a diverse
number of item clustering applications. Hierarchy provides
insights to retailers for efficiently managing categories and
sub-categories. Moreover, for long term strategic decisions,
management must take into account not only current and
direct competition from similar entities (e.g. similar brands),
but indirect competition as well. Indirect competition comes
from entity variants (i.e. entities from different levels of the
hierarchy) and may be more substantial threats in the future.
In that case hierarchical clustering has been found to be of
considerable help [2]. Additionally, the hierarchy extracted
by these methods can be further considered as a decision tree
that can assist in the classification of new items. However,
hierarchical clustering methods require high computational
power and memory usage as they are based on the
formulation of high dimensional distance matrices, used for
pairwise comparisons between all the available data points.

Our research focuses on implementing a new scalable
multi-metric algorithm for hierarchical item clustering. Our
innovation lies in the fact that, instead of performing
pairwise comparisons between all items of the dataset, we
build a low dimensional frequency matrix for the root cluster
which is split recursively as one goes down the hierarchy.
Thus, our proposed framework requires both less
computational power and memory. The input of our
algorithm consists of items represented by a mixture of
topics that derive from topic modeling item’s contextual
information.

The rest of the paper is organized as follows; Section II
discusses related work, while the proposed integrated
framework for item clustering is analysed in Section III. In
Section IV our innovative hierarchical clustering algorithm is
described, whereas Section V contains the experimental

191

2018 IEEE/ACM 5th International Conference on Big Data Computing Applications and Technologies (BDCAT)

978-1-5386-5502-3/18/$31.00 ©2018 IEEE
DOI 10.1109/BDCAT.2018.00031

results and the clustering evaluation. Finally, conclusions
and future work are highlighted in Section VI.

II. BACKGROUND AND RELATED WORK
Recently, item clustering has attracted increased interest

mainly due to the WWW explosion, as item clustering is a
core technology for recommendation and prediction engines
used in online recommender systems. Fremal et al. [4], in an
attempt to improve rating prediction results of a CF based
recommender system, proposed a clustering approach that
used weighting strategies on the items’ genres. On the other
hand, Das et al. [5] introduced a clustering based
recommender system, where voting systems combined
opinions of different users for improving recommendations
to new users. Furthermore, Wang et al. [6] adopt item
clustering for obtaining latent factors in order to apply matrix
factorization as a next step.

Business analytics is another common field of application
for item clustering methods. Srivastave et al. [2] proposed an
iterative hierarchical clustering procedure that is suitable for
numerous marketing applications. In the work of Yang et al.
[7] item clustering was employed for industry categorization,
where Doc2vec was employed for document embedding and
Ward’s hierarchical clustering algorithm was applied to
group similar firms together. Finally, in the work of Hol et
al. [3] a genetic algorithm for basket data analysis and item
clustering was proposed.

Hierarchical clustering algorithms [8] compose a tree of
clusters that comprises a richer data structure than flat
algorithms’ output. In addition, they do not require users to
define the number of clusters. Hierarchical clustering
algorithms are categorized in two major categories: a)
agglomerative (or top-down) algorithms and b) divisive (or
bottom-up) algorithms. Agglomerative algorithms can be
further categorized according to the similarity measures they
employ into single-link, complete link, group-average, and
centroid similarity. Top-down algorithms typically are more
complex, as they hold information about the global
distribution of the dataset, in contrast with bottom-up
methods that make clustering decisions based on local
patterns.

Nevertheless, the complexity of the naïve hierarchical
clustering algorithm is O(N3) as for every decision needs to
be taken, an exhaustive scan of the NxN similarity matrix is

necessary. Other more efficient algorithms can reduce the
complexity to O(N2logN) or even O(N2) but the creation of
the NxN similarity matrix is necessary, hence memory
requirement demands become extremely high.

Thereupon, although there is a wide range of hierarchical
item clustering algorithms, they have substantial
computational and memory requirements. In this paper we
introduce an innovative top-down hierarchical clustering
algorithm which instead of computing pairwise comparisons
between data points, it is based on the construction of low
dimensional frequency matrices, thus is scalable and has low
memory and computational requirements.

III. A NEW ITEM CLUSTERING FRAMEWORK
In this section we propose an efficient framework (Fig. 1)

for hierarchical item clustering based on item topics
modeling. The proposed framework is composed of 1) the
data preprocessing module, which performs topic modeling
using item’s contextual data, 2) the data discretization
module, 3) the hierarchical clustering algorithm, and 4) the
clustering evaluation module that is based on semantic
similarity between the major topics of each cluster.

A. Data Preprocessing Module
The preprocessing module employs topic modelling by

the use of Latent Dirichlet Allocation (LDA) for extracting
semantic information [9], [10]. Topic modeling is based on
the assumption that each document d is described as a
random mixture of topics P(|d) and each topic as a
focused multinomial distribution over terms P(w|). LDA
builds a set of thematic topics, each expressed with a set
of NW terms, utilizing terms that tend to co-occur in a given
set of documents. Parameters and NW are user specified
and can be used to adjust the degree of specialization of the
latent topics.

The topic-term distribution P(|d) and the document-
term distribution P(w|) are estimated from an unlabeled
corpus of documents D using Dirichlet priors. The Gibbs
sampler [11] iterates multiple times over each term wi in
document d and samples a new topic j, according to (1), until
the LDA model parameters converge. In (1), (2), (3), CW
maintains a count of all topic–term assignments, CD counts
the document-topic assignments, W is the set of all available
terms, -i are all topic-term and document-topic assignments
except the current assignment i for term wi, and and are
the hyperparameters of the Dirichlet priors. The posterior
probabilities of (1) are estimated using (2) and (3).

 (1)

(2)

(3)
Fig. 1. A framework for hierarchical item clustering.

192

The most common way to evaluate a probabilistic model
is to measure the log-likelihood of a held-out test set, thus we
use perplexity (4) which is utilized by convention in
language modeling [9]. A lower perplexity score indicates
better generalization performance.

(4)

B. Data Discretization Module
The input vectors of the clustering algorithm, in our case

the mixture of topics P(|d), calculated by the topic
modeling process are discretized into partitions of B lengths
by assigning each value into a bin based on the interval
where it belongs to. B is selected based on the amount of
information we want to be considered by the model.

C. Theoretical basis for the clustering algorithm
1) Frequency Matrix
The hierarchical clustering algorithm employs a

frequency 2-dimensional matrix, where the number of rows
equals to the number of bins (B) selected for the
discretization of the topic mixture, and number of columns
equals to the number of topics () of the sequences
provided as input. Each element (i,j) of the matrix
corresponds to the number of times bin i is present in topic j
for all sequences. The count matrix (CM) contains the
absolute values, whereas the frequency matrix FM (FM =
CM /) contains the corresponding frequencies. In addition
to FM, a frequency similarity matrix (FSM) is constructed
using the same approach, but instead of the B bins, groups
of similar bins are used under given schemes.

2) Bin Similarity
Bin similarity (8) is defined as the average column sum

of the Bin Similarity Matrix (7), which is a weighted
version of the FM. To compute column j of BSM, the non-
zero elements of FM are multiplied by a weight factor that
derives from the similarity of the bins that participate in
topic j. BSSM is a square matrix with order B, where each
element (i,j) indicates how similar bins i, j are (5).

 BSSMij = (5)

mask

 BSM = (7)

where denotes matrix multiplication and denotes
element-wise multiplication.

ΒS = (8)

3) Identity
Identity is a similarity metric that is computed for each

cluster based on the corresponding frequency matrix. This

metric, indicates how compact the cluster is and it is
expressed as the percentage of sequences contained in the
cluster with an exact alignment. This means that the identity
of column j () of the FM is equal to 100% when all
sequences belong to same bin of topic j. Otherwise, the
identity of column j is equal to zero. The overall identity (9)
of the cluster is the average value of the columns’ identity.

Ι

4) Entropy
The entropy quantifies the expected value of the

information contained in a vector. It is computed for each
column of the frequency matrix and represents the diversity
of the column. The Shannon entropy equation [12] provides
a way to encode a string of symbols, based on the frequency
of the symbols. It is depicted in (11) where pi is the
probability of bin i showing up in the topic j. The entropy is
ranging from 0 to Inf. A lower entropy value indicates a
more homogeneous column.

 Hj = (11)

IV. A NEW ITEM CLUSTERING FRAMEWORK
In this section we propose a novel clustering algorithm

that consists of two phases: 1) the first phase includes the
construction of a top down binary tree by consecutively
dividing the frequency matrix into two sub-matrices until
only unique item vectors remain at the leaf-level, and 2) the
second phase is a branch breaking algorithm, where each
branch of the tree is cut at an appropriate level using
thresholds for the metrics.

A. Binary Tree Construction
The first phase consists of a top down hierarchical

clustering method (Algorithm 1). At the beginning of the
process, it is assumed that all items belong to a single
cluster (C0), which is consequently split recursively while
moving along the different levels of the tree. Ultimately, the
constructed output of the clustering process is presented as a
binary tree. The process applied to each cluster (Ci) while
constructing the tree can be formally described in the
following steps:

Step 1: Create frequency and frequency-similarity based
matrices (FMi, FSMi).

Step 2: Compute Identity, Entropy and Bin Similarity of
the matrices (Ii, ISi, Hi, HSi, BSi) applying (9), (11), (8) on the
FMi and the FSMi respectively. The identity metric
computed on the FSM is named as Similarity (IS).

Step 3: Split the frequency matrix into two sub matrices
according to the following criteria:

Criterion 1: Select the element of the FMi with the
highest percentage.

193

Criterion 2: If the highest percentage value exists in more
than one elements of FMi, the column with the lowest
entropy value is selected.

Criterion 3: In the case where more than one columns
exhibit the exact same entropy value, criterion 1 is applied to
the FSMi.

Criterion 4: In the case of non-unique columns, criterion
2 is applied to the FSMi.

Criterion 5: If the number of columns is still more than
one, one column from the above sub group of columns is
randomly selected.

Step 4: Update the Level matrix (Y) and the Metric
matrix (M) that contains the metrics for each cluster (I, IS, H,
HS, BS).

Step 5: Check for leaf-cluster.
At the beginning of the process the user can select the

type of the algorithm i.e. if the split of the matrices wants to
be performed on the FM (option identity_algo), or on the
FSM (option similarity_algo). In the case that
similarity_algo is selected, the split at step 3 is performed
using only criteria 3 and 4.

B. Branch Breaking
The second phase consists of the branch breaking process

(Algorithm 2). For each branch of the constructed binary
tree, the appropriate level to be cut is examined. Since the
tree is asymmetric and the number of items that each cluster
consists of varies, the tree is not cut by selecting a unique
level for the overall tree, but branch-specific thresholds are
used instead. For each branch, the parent cluster is compared
to its two children clusters recursively as one goes down
through the path of the tree branch. The comparison is
applied using the metrics that have been computed for each
cluster Ci (Ii, ISi, Hi, HSi, BSi) and user selected thresholds
for each metric (thrI, thrH, thrBS). An additional limitation
that is set for the identity metric is that the leaf clusters must
have an Identity value higher than 20%. This is set to avoid
pruning at a very high level of the tree in the case that
Identity is too small and the improvement in the metrics is
not big enough.

V. EXPERIMENTAL RESULTS

A. Experimental setup
Next, we evaluate the proposed hierarchical clustering

framework. Analysis and evaluation are performed with
benchmark data provided by the popular MovieLens 20M
dataset [13], that consists of 465,000 tag applications applied
to 27,000 movies by 138,000 users. We formed documents
used as input to the preprocessing module using only user
tags (after removing stop-words, special characters and
acronyms) and not the movie titles, while the latter was
found to be misleading in terms of semantically defining a

Algorithm 2: Branch Breaking

Y: Level-Cluster matrix (Nx L)
M: Metric Matrix (NCx5) with the Identity values (I, IS), the Entropy values (H,
HS), and the Bin Similarity (BS) of all clusters computed on FM and FSM
thrA: the threshold set for metric A
type: [identity_algo, similarity_algo]
Input: Y, M, thrI, thrH, thrBS, algo
Output: Y, M
1. Initialization:
 Find all unique paths of tree from the root till the leaves
2. Iteration:
 Repeat for each path-i
 PNi <- the cluster ids that constitute the path
 Compare each cluster of the path with its child using the metrics
 Repeat for each cluster-j of PNi
 if (type = identity_algo)
 condI ((Ij-Ij+1)*0.5 + (ISj-ISj+1)*0.5) < thrI
 condH (abs(Hj-Hj+1)*50 + abs(HSj-HSj+1)*50) < thrH
 condBS abs(BSj-BSj+1) < thrBS
 cut_condition Ij>20 & (condI || condH || condBS)
 else
 condI (ISj-ISj+1) < thrI
 condH abs(HSj-HSj+1)*100 < thrH
 condBS abs(BSj-BSj+1) < thrBS
 cut_condition ISj>20 & (condI || condH || condBS)
 end if
 if (cut_condition) then
 Convert Cj to leaf
 Update Y, M matrices
 break
 end if
 End
 End
3. return Y, M

Algorithm 1: Binary Tree Construction

N: Number of sequences, L: Number of tree levels, NC: Number of clusters
X: Input matrix (Nx2) with the sequence id and the N -length sequences
Y: Level-Cluster matrix (Nx L)
M: Metric Matrix (NCx6) with the identity values (I, IS), the entropy values
(H, HS) and the bin similarity (BS) of all clusters computed on FM and FMS
type: The algorithm type (identity_algo or similarity_algo)
Input: X, type
Output: Y, M
1. Initialization:
 Create a root node (cluster C0) for the tree
2. Iteration:

Repeat for every new cluster-i
 Compute the level that Ci belongs to
 Compute FMi and FSMi matrices
 Compute metrics (Ii, ISi, Hi, HS, BS) and update M matrix
 Criteria for Division
 Select celli of FMi or FSMi according to the criteria:
 If (type = similarity_algo) then
 Go to step *.4.11
 Elm the elements of FMi with the maximum value

 if Elm.length < 2 then
 celli Elm
 Go to step *.5
 end if
 Elm the elements of Elm with the minimum value of Ei

 if Elm.length < 2 then
 celli Elm
 Go to step *.5
 end if
 Elm the elements of Elm with the maximum value of FSMi

 if Elm.length < 2 then
 celli Elm
 Go to step *.5
 end if
 Elm the elements of Elm with the minimum value of ESi

 if Elm.length < 2 then
 celli random element of Elm
 end if
 Division
 j index of the left child of node-i (Ci)
 Add the sequences that belong to celli to cluster Cj
 Add all the other sequences to cluster Cj+1

 Fill in column Y[,level+1] with Cj or Cj+1 accordingly
 Check if Cj or Cj+1 is leaf
 End
3. return Y, M

194

movie. Since the dataset also contains some movies without
any user tags, we ended up with 19,370 items. Afterwards,
we created 20-length item vectors after applying LDA on the
aforementioned documents, experimenting on the number of
topics from 5 to 500 and evaluating the results using the
perplexity metric.

The item vectors were then discretized in 10 bins
represented by alphabetic letters from A to J. The bin with
the highest percentage is represented by A, whereas the one
with the lowest percentage is described with J. In order to
create the FSM, the groups of similar bins that were used are
non-overlapping and are given by pairing bins in descending
order i.e. <A,B>, <C,D>, <E,F>, <G,H>.

B. Results and discussion
Through the application of the binary tree construction

algorithm of type similarity_algo, a binary tree with 22
levels and 739 leaf clusters was constructed. The Identity
and Similarity metrics began with 0 values at the root of the
tree, whereas the Entropy metric began with 0.266. These
values were improved as moving down the different levels
of the tree and at the leaf level the Similarity value was
close to 100 and the Entropy was close to 0.

TABLE I. AVERAGE VALUES OF THE EVALUATION METRICS OF THE
CLUSTERS PER TREE LEVEL AFTER BRANCH BREAKING

L #C I IS H BS TS
0 1 0.000 0.000 0.266 59.967 NaN
1 2 0.000 2.500 0.202 70.165 NaN
2 4 21.250 27.500 0.154 80.505 NaN
3 8 46.875 55.000 0.103 88.143 NaN
4 13 56.538 66.538 0.084 91.148 NaN
5 19 61.579 73.421 0.067 92.874 NaN
6 25 60.800 76.000 0.068 93.581 NaN
7 33 62.576 79.697 0.062 94.437 39.400
8 40 66.750 82.625 0.053 95.070 39.400
9 43 66.977 82.791 0.052 95.124 50.300

10 44 65.455 82.045 0.054 94.907 50.300
11 45 64.000 81.444 0.057 94.709 50.300
12 46 62.609 80.978 0.059 94.595 49.600
13 47 61.277 80.638 0.061 94.457 49.600
14 48 60.000 80.417 0.063 94.356 49.600
15 49 58.776 80.306 0.064 94.306 49.600
16 50 57.600 80.300 0.065 94.251 49.600
17 51 56.471 80.392 0.066 94.221 49.600
18 52 55.385 80.577 0.066 94.218 46.300
19 53 54.340 80.849 0.066 94.237 57.000

At the second phase, the tree was cut by applying the
branch break algorithm using the percentage of 0.5% as
threshold for all the comparisons of the metrics. The final
tree consists of 19 levels and 53 leaf clusters. The average
values of each level’s metrics using the FM and the FSM
matrices are summarized in Table I. The table shows that
the identity value increased towards the leaves of the tree.
Notably, when groups of similar bins are used instead of the
bins it selves, the similarity value (IS) was a little higher as
expected. The values of the Topic Similarity (TS) metric,

which is discussed in the following sub-section, are also
included in the table.

Fig. 2 shows the bar plots for each one of the leaf clusters
after the application of the branch breaking algorithm. Bins
with high percentage at a specific topic are visualized with
blue colors, whereas bins with low percentage are presented
with yellow colors. Due to the nature of the data, each cluster
has a very low percentage at the majority of the topics and a
middle or a high percentage at only a few topics. So, each
cluster can be characterized by its major topics. For example,
cluster 1, which is represented by the pattern
JJJHJJHJJJJJHJJJJJIJ, is characterized by the topics
4, 7 and 13, whereas the last cluster is characterized by topic
1.

Fig. 2. Bar plots of the 53 clusters created after the branch breaking

algorithm.

195

C. Clustering evaluation
1) Semantic similarity for cluster evaluation
Due to the sparsity of the frequency matrix of each

cluster and the fact that each cluster is characterized by only
a few topics, we evaluated the clustering results by
calculating the semantic similarity between major topics of
each cluster. The topic similarity is extracted using semantic
analysis of the topics that were derived from topic modeling.

Semantic similarity, in contrast to string-based matching
can identify semantically relevant concepts that consist of
different strings. A widely used metric for calculating
semantic similarity is the Normalized Google Distance
(NGD) [14], which is derived from the number of hits
returned by the Google search engine for a given set of
keywords. Keywords with similar meanings tend to be close
in “units” of Google distance, while words with dissimilar
meanings tend to be farther apart. The NGD between two
search terms i and j is presented in (12), where WP is the
total number of web pages searched by Google, f(i) and f(j)
are the number of hits for terms i and j respectively, and
f(i, j) is the number of web pages that contain both i and j.
In practice, NGD values belong to the range [0,1], with 1
referring to complete semantic match.

(12)

Although NGD is a reliable semantic metric, calculating
the similarity of thousands of terms may turn out to be a time
consuming process. As web search engines have limited
throughput for computer generated queries, calculating the
NGD value for a large number of documents within an
acceptable time period is not feasible. Thus, in this work we
use Wikipedia documents to employ an alternate of the
NGD, the Wikipedia-based Semantic Similarity Metric.

To calculate the Wikipedia-based semantic similarity, we
followed the approach proposed by Kolb [15]. First, we used
a simple context window of three words for counting co-
occurrences. By moving the window over a Wikipedia
corpus consisting of 420,184 words (resulting into 1.9 billion
tokens1), we generated a co-occurrence matrix. In order to
find a word's distributionally similar words, one should
compare every word vector with all other word vectors. For
vector comparison, Lin's information theoretic measure [16]
was employed. To compute the overall matching score
between two topics, i.e. the pairwise Topic Similarity (TS)
we used the matching average method (13), which calculates
the similarity between two topics i and j by dividing the
sum of similarity values of all match candidates of both sets
by the total number of set tokens.

TSij = (13)

By employing (13), a N ×N similarity matrix with the
pairwise TS between all the N topics was created. Its main
diagonal entries were equal to 100%, whereas the rest of the
entries were taking values between the interval [3, 63]%.

2) Comparison with a baseline hierarchical algorithm
In this section we present the experimental results on the

MovieLens 20M dataset using the Frequency Based
Hierarchical Clustering (FB HC) algorithm and a Baseline
Divisive Hierarchical2 (BHC) algorithm with four different
evaluation metrics: I, IS, H, BS, TS. Although it is common
for internal clustering evaluation to use the Silhouette
coefficient, this metric measures how close each point in one
cluster is to points in the neighboring clusters and is
computed by making pairwise comparisons between the
elements of the dataset. Computing pairwise distances is
counter to the main point of our algorithm due to the high
complexity it introduces as well as the exponential growth
with respect to the size of the data. The pairwise
comparisons are replaced by the usage of the frequency
matrix in our case, so the Silhouette coefficient and other
relevant metrics for cluster validation do not satisfy our
algorithm’s needs.

TABLE II. AVERAGE VALUES OF THE EVALUATION METRICS OF THE
CLUSTERS CREATED USING THE FB AND BASELINE HC ALGORITHMS

#C Algorithm I IS H BS TS

23
BHC 0.652 13.696 0.167 85.769 56.400

FB HC 54.565 74.783 0.081 93.264 NaN

33
BHC 4.697 24.091 0.153 87.837 49.600

FB HC 68.939 83.939 0.050 95.439 NaN

53
BHC 11.415 35.189 0.139 89.847 44.400

FB HC 54.340 80.849 0.066 94.237 57.000

125
BHC 24.800 53.080 0.120 92.886 42.300

FB HC 69.120 90.600 0.038 96.981 40.300

Table II depicts the comparison between the average
values of the evaluation metrics that have been computed for
each cluster, using four different number of clusters: 23, 33,
53, 125. For the FB HC algorithm these clusters were created
by applying the branch break algorithm using as threshold
for all the metrics the values: 5, 1, 0.5, 0.25, accordingly,
whereas for the BHC algorithm the desired number of
clusters is an input parameter. Topic similarity is computed
only for those clusters that have more than one major topics
and contain more than 10 elements. High values of Identity,
Bin Similarity and Topic Similarity, and low values for
Entropy indicate high quality clustering results, so this table
makes clear that FB HC algorithm outperforms the baseline
algorithm.

Fig. 3 shows the distribution of the metric values that
correspond to each cluster that has been created using the
two algorithms for number of clusters equal to 53. The box
plots and the single points that correspond to each cluster’s
metrics are presented. The lines extending vertically from
the boxes indicate the variability outside the upper or the
lower quartiles, whereas the horizontal lines indicate the
median values of the data points. We observe that the
distributions of the FB HC algorithm for all IS, H and BS
metrics are much better than those created by the BHC
algorithm. TS metric is also better for our method but the
difference here is not so high. More specifically, in the FB
HC algorithm, metric IS is 45.6% higher, H is 52.5% lower
and TS is 4.4% higher than the corresponding values that the
BHC algorithm achieved. 1 http://www.linguatools.de/disco/disco-download_en.html.

 2 https://www.rdocumentation.org/packages/cluster/versions/2.0.7-1/topics/diana.

196

Fig. 3. Comparison between BHC and FB HC algorithms for 53 clusters.

Regarding the memory demands, the average amount of
memory that was used during the application of the FB HC
algorithm is only 63.64MB, whereas the corresponding
value for the BHC algorithm equals to 3063.81MB. As for
the computational time, the FB HC took 6.7min to run,
whereas the BHC took 1260min. This means that our
method achieved a 98% reduction in memory usage and a
99.4% reduction in computational time.

VI. CONCLUSION AND FUTURE WORK
In this work we proposed a novel hierarchical clustering

framework for clustering items that derive from topic
modeling. Our framework consists of two main phases: 1)
the application of a binary tree construction algorithm,
which constructs a hierarchy of items using Identity,
Similarity and Entropy measures to form the clusters, and 2)
a branch breaking algorithm, which prunes each branch of
the tree at an appropriate level using thresholds for the
evaluation metrics. Our approach overcomes limitations
regarding the number of items that can be handled by a
hierarchical clustering algorithm due to memory limitations.
Moreover, our algorithm has increased scalability compared
to a baseline hierarchical clustering algorithm, as instead of
making pairwise comparisons between all the elements of
the dataset to form the clusters, frequency tables are used.

The clustering method was applied to the MovieLens
20M dataset and results of this analysis showed that the
Identity and Similarity values increase as one transitions
from the root towards the leaves of the tree. The final
number of clusters can be selected by setting appropriate
thresholds as input to the branch breaking algorithm.

Future work involves the application of graph theory in
order to uncover connections between the clusters and
obtain an insight of how similar the leaf clusters are. This
information can be used to merge similar clusters together
as a next step. Moreover, a valuable extension of this work
for real time applications would be the implementation of a
decision-making algorithm that exploits the hierarchy of the
clusters to perform new item categorization into the existing
clusters. Finally, additional testing and optimization for

performance is needed, focusing on much bigger datasets, as
well as a robust statistical evaluation of the evident
improvement in memory usage and computational time.

ACKNOWLEDGMENT
This work was partially funded by an IKY scholarship

funded by the “Strengthening of Post-Academic
Researchers” Act from the resources of the OP “Human
Resources Development, Education and Lifelong Learning”
with Priority Axes 6,8,9 and co-funded by the European
Social Fund ECB and the Greek government.

REFERENCES
[1] Ranjbar Kermany, N., & Alizadeh, S. H. (2017). A hybrid multi-

criteria recommender system using ontology and neuro-fuzzy
techniques. Electronic Commerce Research and Applications, 21, 50–
64.

[2] Srivastava, R. K., Leone, R. P., & Shocker, A. D. (1981). Market
structure analysis: hierarchical clustering of products based on
substitution-in-use. The Journal of Marketing, 38-48.

[3] Hol, V., & Sokol, O. (2017). Clustering retail products based on
customer behaviour. Applied Soft Computing, 60(C), 752-762.

[4] Frémal, S., & Lecron, F. (2017). Weighting strategies for a
recommender system using item clustering based on genres. Expert
Systems with Applications, 77, 105-113.

[5] Das, J., Mukherjee, P., Majumder, S., & Gupta, P. (2014, November).
Clustering-based recommender system using principles of voting
theory. In Contemporary computing and informatics (IC3I), 2014
international conference on (pp. 230-235). IEEE.

[6] Wang, X., Wang, X., Ding, Z., Nie, X., & Xiao, L. (2017). A New
Algorithm Based on Item Clustering and Matrix Factorization.
International Journal of Engineering and Technology, 9(2), 160.

[7] Yang, H., Lee, H. J., Cho, S., & Cho, E. (2016, December).
Automatic classification of securities using hierarchical clustering of
the 10-Ks. In Big Data (Big Data), 2016 IEEE International
Conference on (pp. 3936-3943). IEEE.

[8] Larson, R. R. (2010). Introduction to information retrieval. Journal of
the American Society for Information Science and Technology, 61(4),
852-853.

[9] D.M. Blei, A.Y. Ng, M.I. Jordan, Latent dirichlet allocation, J. Mach.
Learn. Res. 3 (2003) 993–1022.

[10] D. Newman, T. Baldwin, L. Cavedon, E. Huang, S. Karimi, D.
Martinez, F. Scholer, J. Zobel, Visualizing search results and
document collections using topic maps, Web Semant. Sci. Serv.
Agents World Wide Web 8 (2010) 169–175.

[11] G. Casella, E.I. George, Explaining the gibbs sampler, Am. Stat. 46
(1992) 167

[12] Lin, J. (1991). Divergence measures based on the Shannon entropy.
IEEE Transactions on Information theory, 37(1), 145-151.

[13] F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens
Datasets: History and Context. ACM Trans. Interact. Intell. Syst. 5, 4,
Article 19 (December 2015), 19 pages.

[14] R.L. Cilibrasi, P.M.B. Vitanyi, The google similarity distance, IEEE
Trans. Knowl. Data Eng. 19 (2007) 370–383.

[15] P. Kolb, DISCO: a multilingual database of distributionally similar
words, in: A. Storrer, A. Geyken, A. Siebert, K.-M. Würzner (Eds.),
KONVENS 2008 — Ergänzungsband: Textressourcen und
lexikalisches Wissen, 2008, pp. 37–44.

[16] D. Lin, Automatic retrieval and clustering of similar words,
Proceedings of the 36th Annual Meeting of the Association for
Computational Linguistics and 17th International Conference on
Computational Linguistics — Volume 2, ACL '98, Association for
Computational Linguistics, Stroudsburg, PA, USA, 1998, pp. 768–
774.

197

